
A Better Color Space Conversion Based on Learned Variances For Image

Compression

Yundong Zhang∗1, Ming Li∗2, Changsheng Xia2, Zhangming Huang2,

Jianhua Hu2,Dekai Chen2, Jinwen Zan1, Guoxin Li1, Jing Nie2

1Vimicro AI Chip Technology Corporation
The National Key Laboratory of Digital Multimedia Chip Technology

Room607,6/F, Shining Tower, No.35 Xueyuan Road, Haidian District, Beijing 100191 China
2Guangdong Vimicro Microelectronics Corporation

Building 16,Hengqin Financial District, Hengqin New Area, Zhuhai City, Guangdong Province, P.R.C
li.ming@zxelec.com

Abstract

Modern image coders, especially the lossy ones, encode

the YCbCr channels separately.Processing the Y channel

is always much more sophisticated than the Cb/Cr. The

raw image retrieved from the camera sensor is of Bayer-

RGB[1] or 3-color RGB[2] format, and the conversion be-

tween RGB and YCbCr format normally follows the ITU-R

BT.601[4] standard, which essentially defines a fixed 3x3

space conversion matrix with offsets. The algorithm pre-

sented in this paper, however, learns a better color space

conversion algorithm tailored for each image, squeezing

more information into the Y channel before encoding. In

order to achieve this goal, the principle component anal-

ysis (PCA)[6] algorithm has been trained, to find the im-

age’s primary axes giving the highest variance. The PCA

algorithm is carried out onto the AC values of each 16x16

pixel block (RGB values minus the block DC). During de-

coding, the least square method (LSM) is proposed, to esti-

mate the optimal inverse conversion and to compensate for

the coding noise. Overhead of the proposed algorithm is

negligible 12 coefficients per image only, around 0.00019

bit per pixel for an image of size 2M bytes. The image after

PCA conversion is coded by the latest H.266 codec run-

ning in INTRA mode, with a binary arithmetic coding en-

gine as the entropy coder. Experiments on the CLIC2019’s

valid dataset has shown a significant RGB-PSNR perfor-

mance boost: 0.26db or 7.4% bitrate save@0.145bpp, and

1.2db/22.5%@1.0bpp. The choice on Cb/Cr axis and the

channel range are also studied. The proposed algorithm

also outperforms the YCoCg[5] conversion algorithm, and

is more robust than the YCoCg/BT.601 algorithm.

∗The first two authors share first-authorship

1. Introduction

Many advanced lossy image compression draft/standard

had been published in the recent years, such as HEVC,

H266, AVS 2.0, SVAC 2.0 mainly for video and JPEG,

JPEG2000, BPG for still image. Image encoders based on

these standards are all processing Y/Cb/Cr channels sepa-

rately and using a fixed 3x3 RGB-YUV coversion matrix

and 3x1 offset to convert the raw image’s RGB into the

required YCbCr format. The widely used covert formula

comes from ITU-R BT.601, the digital version of BT.601

defines (Y is within [16,235], Cb/Cr is within [16,240]) as

eq.1. We define T601 and Offset601 as the 3x3 matrix and

3x1 vector in this eq:





Y
Cb
Cr



 =





0.257 0.504 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071









R
G
B



+





16
128
128





(1)

Eq.1 is induced from a biological perspective that hu-

man’s eyes are much more sensitive to lumina than color.

Meanwhile green light contributes more to lumina than blue

and red components. This observation make the Y has more

weight for G and Cb for B, Cr for R.

As a result of above, modern image encoder will put

more resources on the Y processing pipeline than the

Cr/Cb’s and Y/Cb/Cr channels’ processes are indepen-

dent, although recent H266 adopted some techniques such

CCLM[3] to reduce the coherence between Y and CbCr

components, it’s still far from enough. So it would be help-

ful if more original image’s RGB information is squeezed

into the Y channel’s processing, and the rest left to Cb/Cr

channels. Obviously eq.1 can not guarantee this, because

firstly it’s fixed, not optimal for a specific image, and sec-

ondly each row of the matrix is not even orthogonal, mean-

ing the result Y/Cb/Cr are some how coherent.

In this paper, we manage to find a optimal RGB-YCbCr

1

convert matrix for each image, as it’s eq.2, also we define

Tenc and Offsetenc





Y
Cb
Cr



 =





x1 x2 x3
y1 y2 y3
z1 z2 z3









R
G
B



+





Y offset
Cb offset
Cr offset



 (2)

Each row in Tenc is the direction of the new YCbCr

space’s base axis, they should be orthogonal and should en-

sure the resulting YCbCr are within valid range.

The first goal is to find a new primary new base axis to

replace matrix’s first row in eq.1. The original picture is

of RGB 3-dimension. We assume each channel’s entropy

is proportional to their variances. To find a new axis that

present the most entropy, the PCA is natural choice since

it’s simple and effective. Data samples are pixels’ RGB mi-

nus corresponding averages. The PCA also produce the sec-

ond/third base axes as well, which can be used as directions

of base axes for Cb/Cr directly.

Many researches of PCA used in color-to-gray image

conversion are published such as [7],[8],[9]. They are

welled concentrated in improving better and faster conver-

sion ,but few is related with the later image compression.

We focus on improving image compression performance in

this paper.





R
G
B



 = T−1

enc · (





Y
Cb
Cr



−Offsetenc) (3)

When decoding, the usual way to do the YCbCr-RGB

conversion is simply use the inverse Tenc and Offsetenc
like eq.3. This reversion is good but not optimal, because

YCbCr are lossy and somewhat distorted from the uncom-

pressed version. We use LSM to estimate the optimal Tdec

and Offsetdec, and it help to further increase the RGB-

PSNR.

Further experiment are done to try to clearify:

1. Using different Cb/Cr axes instead of directly using the

second/third axes from PCA, does not help.

2. Using different valid range for Y/Cb/Cr, would influ-

ence the bitstream rate, but does not help to improve

bd-rate.

We will discuss these in later sections.

2. Details of our approach

2.1. Conversion Range

We assume the whole system is of 8bit quantization.

R/G/B is within [0,255], Y is within [16,235] and CbCr is

within [16,240]. So the eq.2 must keep the Y/Cb/Cr within

the valid range after conversion. For a natural image, its

R/G/B are strongly positive coherent. It always keep the

elements of primary axis’s vector is all positive(or all nega-

tive if revert the axis, we use the positive as default), that is

x1, x2, x3 > 0, and let eq.4 be the restrict for Y.

x1 + x2 + x3 = (235− 16)/255 (4)

The Second/third axis derived from PCA is always or-

thogonal to the primary axis, since all element in the pri-

mary vector is positive, there must always be positive and

negative elements in [y1,y2,y3] and [z1,z2,z3]. Second

axis’s range restriction should be:

|y1|+ |y2|+ |y3| = (240− 16)/255

|z1|+ |z2|+ |z3| = (240− 16)/255
(5)

2.2. Find the primary axis using PCA

The primary axis in the new space should produce the

most variance, and the converted data is as the input to Y

channel pipeline. PCA data samples are as eq.6:

Rsample = each pixel′R− average R

Gsample = each pixel′G− average G

Bsample = each pixel′B − average B

(6)

Dimension of the sample set is [h*w, 3], h and w

is height and width of the image. The normalization is

dropped here because it would make R/G/B’s average vari-

ance equal to 1, eliminating the variance(entropy) differ-

ence between R/G/B, which is a key information for our

method.

Assuming a channel’s entropy is proportional to vari-

ances is good for single-centered distributed samples, but

bad for multi-centered’s. It is obvious not feasible to gather

our sample using R/G/B minus the whole image’s average.

We divide the whole image in to 16x16 grids, each sam-

ple minus the average within the same grid, not within the

whole image. The division help to further improve the ac-

curacy of the covariance matrix and is a key difference to

previous works.

Define the sample as S, and ST× S is the covariance

matrix COV of size 3×3. PCA method decompose ma-

trix COV to find eigenvalues and eigenvectors. Stack the

eigenvectors along column to form transformation matrix

Tpca.Note that Tpca is identity orthogonal matrix, T−1

pca =

TT
pca

Tpca =





xp1 xp2 xp3
yp1 yp2 yp3
zp1 zp2 zp3





And finally according to YCbCr’s range restrictions eq.4

and eq.5:

2

[x1, x2, x3] = L1 normalize([xp1, xp2, xp3]) ∗ 219/255

ScaleCb := 224/255/(|yp1|+ |yp2|+ |yp3|)

[y1, y2, y3] = [yp1, yp2, yp3] ∗ ScaleCb

The same scaling is done with the Cr axis. Offsetenc is mod-

ified as eq.7

Y offset = 16

Cb offset = −1 ∗ sum neg(y1, y2, y3) ∗ 255 + 16

Cr offset = −1 ∗ sum neg(z1, z2, z3) ∗ 255 + 16

(7)

sum neg() is the function of summing up all the negative

elements.

2.3. Discussion about Cb/Cr axes

As discussed above, we directly use the [yp1 , yp2 ,yp3]

and [zp1 , zp2 ,zp3] as the new second/third axes’ direction.

PCA always arrange the order of axes with sorted eigenval-

ues from large to small. We rotate the Cb/Cr axes(0∼90

degree) in the plane Pt which is perpendicular to the Y axis,

to explore the impact on the final PSNR.

While rotating, we also calculate the Cb/Cr variance, the

experiment is done on some specific images(evaluation on

the whole dataset is a huge task).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
degree

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

Va
ria

nc
e

Cb_var
Cr_var
psnr

37.20

37.21

37.22

37.23

37.24

37.25

PS
NR

 [d
B]

QP=36

Figure 1: relation ship of psnr with rotate angle, Cb/Cr vari-

ances

A typical one can be seen on fig.1, since bitstreams’

sizes result from different angles are similar, we only ob-

serve the PSNR. PSNR varies along rotate angles. A week

trend is observed that PSNR is better when Cb/Cr variance

difference is large. Since 0 degree is the difference max

case(PCA’s Properties), we don’t need to rotate the Cb/Cr

axes.

2.4. Discussion about valid range

As the eg.1 show that Y do not use the whole 0∼255

range. We decide to find whether performance is related

to enlarging or shrinking the range. The experiment is done

with different new Y ranges as [250,219,200,160,80,80] and

QP[34∼38], and the result is show as fig.2

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
bpp [bits / pixel]

26

28

30

32

34

PS
NR

 [d
B]

QP 34-38
scale_250
scale_219
scale_200
scale_160
scale_120
scale_80
scale_40

Figure 2: relationship of psnr with

different range, qp

Shrinking the range would decrease the bitstream

while also degrade the PSNR. At the same bpp, range

250/219/200/160 perform almost the same. So the range

select do not impact the bd-rate.

2.5. Optimization of the reverse conversion

In decoding, instead of using the T−1

enc and Offsetenc, we

optimize the Tdec and Offsetdec to replace the them in eq.3.

But eq.3 is not a normal form for LSM, we rewrite a equiv-

alent formula as eq.8





R
G
B



 = Tdec ·





Y
Cb
Cr



+Offsetdec (8)

Optimizing the Tdec and Offsetdec is to minimize the

mean square error between eq.8’s resulting RGB and the

uncompressed RGB. Each row of Tdec and Offsetdec are es-

timated within one LSM process. The Tdec should be very

closed to T−1

enc, but is more optimal, we can see the improve-

ment in the experiment section.

3. Experiment result and discussion

3.1. Analysis of PSNR­boost

The latest H.266(VTM 4.0) with all tools en-

able(SAO,CCLM,ALF,....) is used as the backbone YCbCr

codec, YCbCr 4:2:0 format is used. We wrap it up with dif-

ferent encoding/decoding color space conversion, Cb/Cr are

scaled up and down with normal bi-cubic interpolation. To

verify the method we discussed, we divide the tests in to 4

group.

1. Use the usual BT.601 conversion for coding and de-

coding. It is the baseline of the experiment.

3

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
bpp [bits / pixel]

30.50
30.75
31.00
31.25
31.50
31.75
32.00
32.25
32.50
32.75
33.00
33.25

PS
NR

 [d
B]

QP 34-38
baseline
PCA_whole_avg
PCA_divide_avg
PCA_divide_LSM

Figure 3: RGB PSNR at high QP34∼38

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
bpp [bits / pixel]

37.00
37.25
37.50
37.75
38.00
38.25
38.50
38.75
39.00
39.25
39.50
39.75
40.00
40.25
40.50

PS
NR

 [d
B]

QP 20-24
baseline
PCA_whole_avg
PCA_divide_avg
PCA_divide_LSM

Figure 4: RGB PSNR at low QP20∼24

2. Use PCA to optimize the Tenc and Offsetenc, and T−1

enc

for decoding. Average RGB use whole image’s

3. Same as 2, except using 16x16 grid’s averages

4. Same as 3, except decoding with the optimized Tdec

and Offsetdec.

RGB-PSNR is tested at QP 34∼38 and QP 20∼24, on the

CLIC2019 valid dataset, and the bd-rate curves are shown

in fig.3 and fig.4:

Group 2,3,4 show significant improvements of -4%,-

5.3%,-7.4% @0.15bpp than the baseline, and even huge

boost of -10.0%,-16.5%,-22.5% @1.0bpp. Obviously the

proposed method performes much better at lower QP.

3.2. Compare with YCoCg

Following the suggestions from reviewers, we add these

following comparison with the YCoCg[5] with 420 and 444

format. YCoCg give a much suitable primary axis esti-

mation than BT.601 which is Y=0.25R+0.5G+0.25B and

PSNR is much better than BT.601. But our method still

outperforms in all situations, as show in Fig.5 and Fig.6

3.3. Superb robustness

Our method also shows superb robustness than

YCoCg/BT.601. Fig.7 is an special case of a purple filtered

image. It’s not the natural kind but can be often seen in

0.12 0.14 0.16 0.18 0.20
bpp [bits / pixel]

31.0

31.5

32.0

32.5

33.0

PS
NR

 [d
B]

QP 34-38
baseline
proposed
YCoCg
baseline_444
proposed_444
YCoCg_444

Figure 5: proposed/YCoCg/BT.601 with 420/444 format at

QP34∼38

0.7 0.8 0.9 1.0 1.1 1.2
bpp [bits / pixel]

38

39

40

41

PS
NR

 [d
B]

QP 20-24
baseline
proposed
YCoCg
baseline_444
proposed_444
YCoCg_444

Figure 6: proposed/YCoCg/BT.601 with 420/444 format at

QP20∼24

0.0 0.2 0.4 0.6 0.8 1.0 1.2
bpp [bits / pixel]

30.0

32.5

35.0

37.5

40.0

42.5

45.0

PS
NR

 [d
B]

QP 18-40
baseline
proposed
YCoCg

Figure 7: An image of purple style and comparison with

proposed and YCoCg/BT.601

artist gallery, movies’ special scene or so on. This picture’s

R/B are emphasized while G is surpressed which is a prob-

lem for YCoCg/BT.601 with fixed coefficients and empha-

sizing the G channel for converting the Y channel. We test

this image with proposed/YCoCg/BT.601 with 420 format

at different bitrates as Fig.7

The result shows that our method keeps increasing the

RGB-PSNR constantly as the bitrate goes up, while PSNR

increasing of YCoCg/BT.601 goes flat. The proposed

method has over 40% performance gain than the YCoCg

@1.0bpp. Our method is robust in all situations because

the conversion is adaptive. The fixed conversions like

YCoCg/BT.601 fail to keep constant performance in these

special cases.

4

References

[1] Silicon Imaging ”RGB Bayer Color and MicroLenses”

[2] Cliff Wootton ”A Practical Guide to Video and Au-

dio Compression: From Sprockets and Rasters to Mac-

roblocks”, Elsevier. p. 137. ISBN 978-0-240-80630-3.

[3] Kai Zhang ”Multi-model Based Cross-component Lin-

ear Model Chroma Intra-prediction for Video Coding”,

VCIP 2017, Dec. 10 – 13, 2017, St Petersburg, U.S.A.

[4] International Telecommunication Union ”BT.601 : Stu-

dio encoding parameters of digital television for stan-

dard 4:3 and wide screen 16:9 aspect ratios”

[5] ”YCoCg wikis” https://en.wikipedia.org/wiki/YCoCg

[6] Jolliffe, I.T. ”Principal Component Analysis, second

edition (Springer).”,

[7] Arash Abadpour ”COLOR IMAGE PROCESSING US-

ING PRINCIPAL COMPONENT ANALYSIS”

[8] Ja-Won Seo ”NOVEL PCA-BASED COLOR-TO-GRAY

IMAGE CONVERSION”

[9] Esteban Vera ”Adaptive Color Space Transform using

Independent Component Analysis”, Proc Of SPIE-IS&

T Electronics Imaging. 2007;6497:64970P–12.

5

